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ZnCr,04 undergoes a first order spin-Peierls-like phase transition at 12.5 K from a cubic spin liquid phase
to a tetragonal Néel state. [S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff I, and S-W. Cheong, Phys. Rev. Lett.
84, 3718 (2000)]. Using powder diffraction and single crystal polarized neutron scattering, we determined the
complex spin structure of the Néel phase. This phase consisted of several magnetic domains with different
characteristic wave vectors. This indicates that the tetragonal phase of ZnCr,_, ,Ga, O, is very close to a
critical point surrounded by many different Néel states. We have also studied, using elastic and inelastic
neutron scattering techniques, the effect of nonmagnetic dilution on magnetic correlations in ZnCr,_,,Ga, O,
(x=0.05 and 0.3). For x=0.05, the magnetic correlations do not change qualitatively from those in the pure
material, except that the phase transition becomes second order. For x=0.3, the spin-spin correlations become
short range. Interestingly, the spatial correlations of the frozen spins in the x=0.3 material are the same as those
of the fluctuating moments in the pure and the weakly diluted materials.
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I. INTRODUCTION

There has been a long standing fascination in the physics
community with placing antiferromagnetically coupled spins
on lattices with triangular motifs.!”3 In three dimensions,
when spins form a network of corner sharing tetrahedra, it
leads to a macroscopically degenerate ground state for clas-
sical as well as quantum spins.*> Theoretically novel low
temperature properties are expected to appear. For example,
quantum spin liquid phases, fractional excitations, or non-
Ginzburg-Landau phase transitions. Experimentally, spinels
AB,0, have attracted lots of attention because the B sublat-
tice forms a network of corner-sharing tetrahedra. In the spi-
nel, the B site cations are octahedrally coordinated by six
oxygens and neighboring BOg octahedra share an edge.
Thus, when the B site is occupied by a transition metal ion
with t,, electrons, the system can realize the simple and most
frustrating Heisenburg spin Hamiltonian, H=JX8§;-S; with
uniform nearest neighbor interactions (see Fig. 1).

ACr,0, (A=Zn,° Cd,” Hg,®) realizes the most frustrating
Hamiltonian because the f,, orbital of the Cr’* (3d%) is half
filled and the nearest neighbor interactions due to the direct
overlap of the neighboring 7,, orbitals are dominant and spa-
tially uniform.” In comparison, in the case of AV,0, where
the V3* (34%) ion has an orbital degeneracy, a Jahn-Teller
distortion can occur at low temperatures, which makes
the vanadates effectively one-dimensional spin chain
systems.!%-13 Several novel discoveries have been made in
ACr,0,. For instance, collective excitations of local antifer-
romagnetic hexagonal spins were found in the spin liquid
phase of ZnCr,O, that embody the zero-energy excitations
amongst the degenerate ground states.'*!> Unfortunately, the
lattice of ACr,0Oy is not infinitely firm and it distorts at low
temperatures to lift the magnetic frustration. The novel three-
dimensional spin-Peierls phase transition, i.e., the lattice in-
stability driven by magnetic interactions, occurs and drives
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the system into a Néel state. The lattice distortion can occur
in different forms, depending on details of the crystal envi-

ronment: tetragonal /4m2 symmetry for ZnCr,0,,' tetrago-
nal I4,/amd for CdCr,0,,'® and orthorhombic Fddd for
HgCr,0,.%!'7 When an external magnetic field is applied to
the Néel state, the half-magnetization plateau states appear in
CdCr,0,4'® and HgCr,0,%!” due to the field-induced lattice
instability. %20

In this paper, we investigated the nature of the 3D
spin-Peierls transition in the chromite by performing
elastic and inelastic neutron scattering measurements on
ZnCr,_,,Ga,, 0, for x=0, 0.05, and 0.3. Our principal results
are the following. For x=0, the Néel state has four charac-
teristic wave vectors, k=(1,0,0), (%%,%), (1 ,0,%), and
(% , % ,0).2122 The large size of the magnetic unit cell (64 Cr**
ions) has made it difficult to uniquely determine the spin
structure of this system. We have determined the spin struc-

FIG. 1. (Color online) Octahedral B sites of spinel AB,O, form
a network of corner-sharing tetrahedra.
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FIG. 2. Phase diagram for ZnCr,_,,Ga,,O,. Néel temperature
Ty and spin freezing temperature 7 represented by circles are the
data obtained by bulk susceptibility measurements reported in Ref.
24. Ty represented by squares and (S)/S in the inset are obtained by
our neutron scattering measurements, which is discussed in the
Secs. IV and V.

ture, employing powder diffraction, single crystal polarized
neutron diffraction data and a systematic group theoretical
approach.”> We find that the system is composed of three
types of domains whose relative fractions vary from sample
to sample. The dominant domain is a multi-k structure with
k=(1 ,O,%) and (%,%,0). This spin structure is coplanar and
noncollinear with spins pointing along either the a or b axis
with each tetraheron having two pairs of antiparallel spins to
have zero net moment. The k=(%, % , %) domain has a rather
simple spin structure. The spinel lattice can be decomposed
into alternating kagome and triangular layers when viewed
along the (111) direction. In this spin structure, the spins in
the Kagomé layer order in the “g=0" configuration. The
spins in the triangular layer point along the (111) direction
and are parallel within a layer. Spins in alternating layers are
antiparallel. The k=(1,0,0) domain has a collinear spin
structure with spins parallel to the z axis, as in ZnV,0,.!! In
each tetrahedron the net spin is zero.

The effect of site disorder on the magnetic correlations
and phase transition in ZnCr,0, by doping nonmagnetic Ga
ions into Cr sites has been previously studied by Fiorani et
al. using bulk property measurements and neutron powder
diffractions in the ZnCr,_, Ga, O, series.?* Figure 2 shows
the phase diagram that they have constructed from the mea-
surements. Néel phase survives up to x~0.2. For 0.2<x
<x, with 1-x,=0.390(3) being the percolation threshold for
the corner-sharing tetrahedra,” the system exhibits spin-

TABLE I. Measured ratios of SF to NSF scattering intensities

for three magnetic reflections that belong to k=(1,0, %)

h2
(h,1,k) (sF/ ONsF)obs 1_h2+12
(1,0.5,0) 0.4(1) 0.2
(1,1.5,0) 0.7(1) 0.6923
(1,2.5,0) 0.83(5) 0.862
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FIG. 3. Powder diffraction data from ZnCr,O,4 at 25 K and 2 K
taken on the powder diffractometer BT 1 at NIST. The line through
the data in (a) shows the Rietveld fit to the crystal structure of
which parameters are shown in Table 1. The line in (b) is the fit to
the crystal structure and the magnetic structure that are explained in
the text for sample 1. The upward pointing arrows with plain line

are magnetic reflections which belong to k=(%,%,0). From the

left, they_are (%,%,0),(%,%,1),(%,%,0),@,%,1‘,(%,%,2) and
(Q,Q,O),(l,z,Z) and (l,é,O), and (1,2,1). The upward arrows
2°2 2°2 22 2°2

with dashed line are magnetic reflections which belong to k

=(1,0,%). From the left, they are (1,0,%),(1,0,%),(1,2,%), and

(2.1 , %) and (1,0, %) The downward pointing plain arrows are from

the l(_:S,l,%> family of magnetic reflections. From the left, they
are (%%% , (%%%) and (%%%) The downward pointing dashed

arrows are from the k=(1,0,0) family of magnetic reflections.
From the left, they are (1,1,0), (2,1,0), and (2,1,1). (c) and (d) show
the data and fits for samples (2) and (3) respectively, also discussed
in the text.

glass-like properties in bulk susceptibility measurements.
However, the nonlinear susceptibility of ZnCr,_,,Ga,, 0, (x
=0.2) does not display the divergence expected of an ordi-
nary spin glass.?® This suggests that the low temperature
phase is not an ordinary spin glass.

Our data show that in the weakly diluted ZnCr,_, Ga, O,
(x=0.05) Néel ordering occurs with the same spin structure
as the parent compound. However, the ordering now devel-
ops gradually and the phase transition becomes second order.
The appearance of the Néel ordering and the cubic-to-
tetragonal structural phase now also proceed in a second or-
der manner. This consanguinity of the order of the structural
phase transition and the appearance of long-range magnetic
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FIG. 4. Rocking scan through (a) a nuclear Bragg reflection at
(2,2,0) and (b) a magnetic Bragg reflection at (%,—%,O) obtained
from a single crystal of ZnCr,04 at 7=1.7 K. Open circles are the
NSF data and filled ones are the SF data.

ordering supports our interpretation that the phase transition
is magnetically driven.

For ZnCr,_,,Ga,, 0, (x=0.3), the magnetic long range or-
der is replaced by static short range order even though the Cr
concentration, 1-x=0.7, is well above the percolation
threshold, 0.390. Interestingly, the spatial correlations of the
frozen spins in the spin-glass sample are the same as those of
the fluctuating moments present in the pure and weakly di-

luted materials. Magnetic neutron scattering intensity, T(Q),
vanishes as Q— 0 and has a broad peak at Q.= 1.5 A~! with
full width at half maximum (FWHM) of «=0.48(5) A~
This indicates that fundamental spin degree of freedom in the
corner-sharing tetrahedra involves an antiferromagnetic hex-
agonal spin loop with zero net moment, which distinguish
the geometrically frustrated magnet from an ordinary spin
glass.

The structure of this paper is the following. In Sec. II, we
describe the experimental details of material synthesis and
the neutron scattering techniques that were used. In Sec. III,
we explain the determination of the spin structure of
ZnCr,0,. In Sec. IV, we discuss inelastic neutron scattering
data on the material and how the spin freezing and short
range spin correlations in the diluted compound resemble
those in other frustrated magnets. This paper concludes with
a discussion and summary in Sec. V.

II. EXPERIMENTAL DETAILS

Three 20g powder samples of ZnCr,O4 one
ZnCr ¢Ga; 0,4 sample and ZnCr; ,Gay¢O, sample, were
prepared by the standard solid state reaction method with
stoichiometric amounts of Cr,03;, Ga,O; and ZnO in air.
Neutron powder diffraction measurements performed on the
samples at the National Institute of Standards and Technol-
ogy (NIST) BT1 diffractometer show that the samples were
stoichiometric single phase spinels with the exception of one
ZnCr,0, sample (sample 2) which had a minority phase of
1% f.u. unreacted Cr,O5. The results of the structural refine-
ment are summarized in Table I. The ZnCr,0, samples will

FIG. 5. Rocking scan through magnetic Bragg reflections (a) at
(1 ,%,0) and (b) at (1 ,%,O) obtained from a single crystal of
ZnCr,04 at T=1.7 K. Open circles are the NSF data and filled ones
are the SF data.

be denoted by sample 1, sample 2, and sample 3 in this
paper.

A 0.1 g single crystal of ZnCr,O, was grown by
the chemical transport method and used for polarized
neutron diffraction measurements at the NIST cold
neutron triple-axis spectrometer, SPINS. Spectrometer con-
figuration was guide-PG(002)-Be-Pol.-40’-Samp.-Flip.-Pol.-
40’-PG(002)-Det. The sample was mounted such that the
scattering plane were the (2k0) and (h0l) zones due to twin-
ning. A vertical guide field was applied. The polarization
efficiency was determined by measuring the scattering inten-
sities of a nuclear (2,2,0) Bragg peak with the flipper on and
off. Correction for the finite polarizing efficiency, 0.85(1),
was made.?

For inelastic neutron scattering measurements on powder
samples, we utilized a multiplexing detection system of
SPINS consisting of a flat analyzer and a position-sensitive
detector. The details of the experimental setup are reported
elsewhere.® High angle backgrounds were measured by de-
focusing the analyzer while low angle backgrounds from air
scattering were measured by extracting the sample from the
cryostat. The absolute efficiency of the detection system was
measured using incoherent elastic scattering from vanadium
and nuclear Bragg peaks from the samples. The correspond-
ing correction factor was applied to the background sub-
tracted data to obtain normalized measurements of the mag-
netic scattering cross section.?’

III. ANTIFERROMAGNETIC LONG-RANGE ORDER
IN ZIICI’204

A. Powder diffraction data

Figure 3(a) shows 7T=25 K>Ty diffraction data from
ZnCr,0, with the Rietveld fit superimposed. In addition to
the nuclear Bragg reflections, there is a broad peak centered
at 0~ 1.5 A~!. This broad peak is due to dynamic spin fluc-
tuations and will be discussed in Sec. IV. Below T, the broad
peak weakens and magnetic Bragg reflections appear, indi-
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TABLE II. The basis functions of the irreducible representation of group OZ for the two-arm star of the
wave vector k= (2 - ,0). Here K is in terms of the cubic notation and k:;ll(Z, 1,1) in Kovalev’s notation (Ref.
35). Here ky=k and k,=—k. The notation of representations, such as 7, 7|, and so on, followed the

Kovalev’s notation. Lﬂi”

(i=1,2,3,4) represent the basis functions for the spins located at (0.5,0.5,0.5),

(0.5,0.75,0.75), (0.75,0.5,0.75), and (0.75,0.75,0.5) in the cubic notation, respectively. This table was taken

from Table 22 in p. 131 of Ref. 23.

Rep. Arms c/)fT L/}z” l/é”— l/d”—
7 ky (1,1,0) (0,0,0) (0,0,0) i(1,1,0)
ky (1,1,0) (0,0,0) (0,0,0) -i(1,1,0)
7 k, (0,0,0) (1,1,0) (1.1,0) (0,0,0)
ky (0.0.0) -i(1,1,0) ~i(1,1,0) (0.0.0)
™ k (1,1,0) (0,0,0) (0,0,0) i(1,1,0)
ky (1,1,0) (0,0,0) (0,0,0) —i(1,1,0)
7} k (0,0,0) (1,1,0) (1,1,0) (0,0,0)
ky (0,0,0) -i(1,1,0) -i(1,1,0) (0,0,0)
7 k (0,0,1) (0,0,0) (0,0,0) i0,0,7)
ky (0,0,1) (0,0,0) (0,0,0) -i(0,0,1)
7 ky (1,1,0) (0,0,0) (0,0,0) i(1,1,0)
ky (1,1,0) (0,0,0) (0,0,0) -i(1,1,0)
Tg ky (0,0,0) (1,1,0) (1,1,0) (0,0,0)
ky (0,0,0) -i(1,1,0) -i(1,1,0) (0,0,0)
7 k (0,0,1) (0,0,0) (0,0,0) i(0,0,1)
ky (0,0,1) (0,0,0) (0,0,0) -i(0,0,1)
7 k, (0,0,0) (0,0,1) (0,0,1) (0,0,0)
k, (0,0,0) -i(0,0,1) -i(0,0,1) (0,0,0)
7 ky (1,1,0) (0,0,0) (0,0,0) i(1,1,0)
ky (1,1,0) (0,0,0) (0,0,0) -i(1,1,0)
7 ky (0,0,0) (1,1,0) (1,1,0) (0,0,0)
ky (0,0,0) -i(1,1,0) —-i(1,1,0) (0,0,0)
7 k (0,0,0) (0,0,1) 0,0,1) (0,0,0)
ky (0,0,0) -i(0,0,1) -i(0,0,1) (0,0,0)

cating a long-range magnetic ordering. These diffraction pat-
terns are consistent with those observed previously from
ZnFe, Cr; 0,.? Indexing these magnetic reflections indi-
cates that the magnetic unit cell consists of four chemical
formula units (64 magnetic Cr** ions) which can be charac-
terized by four wave vectors, k= (- 0) (1 0, ) (2,;;)
and (1,0,0). Interestingly, the (2,2,25 and (1,0 O) peaks are
very weak in the samples 2 [Fig. 3(c)] and 3 [Fig. 3(d)],
while the (%,%,0) and (1,0,%) peaks remain strong in all
three samples. This indicates that the tetragonal phase is
close to a critical point in the phase space surrounded by
several spin structures. Among the spin structures, the ones
with the characteristic wave vector of (2 3 0) and of (1 ,0, %)
are the intrinsic ground state of the tetragonal phase, while
the other two spin structures with (2,2 %) and (1,0,0) can
also be favored when certain subtle local distortions which
are unknown yet are introduced to the tetragonal phase.

It is impossible to uniquely determine spin structure for a
system with such a large magnetic unit cell only from its

powder diffraction pattern. Olés proposed an inplane spin
structure for ZnFe,,Cr, 404> and Shaked et al. a non-
inplane structure for MgCr,0,.>° Apparently, as we will
show in Sec. III C, there are numerous spin structures that
can explain the neutron powder diffraction data equally well.
To obtain more restrictive information for the spin structure,
we have performed polarized neutron diffraction on a single
crystal of ZnCr,0O,4. Our polarization study focuses on the
k—(g,g,O) and (1 ,0,%) family of magnetic reflections.

B. Polarized neutron diffraction data from a single crystal

This material undergoes a cubic-to-tetragonal structural
phase transition with ¢ <a at Ty=12.5 K.% Because of tetrag-
onal twinning, below 7y a wave vector transfer Q

=(Q,, Q) ,QZ) in the laboratory coordinate system represents
(Q,/a" QV/a ,0./¢ “Y=(h,k,]) and (Qx/a Q}/c ,0./a ")
=(h,l,k) in different crystal twin domains. In the configu-
ration with a vertical guide field, the non-spin-flip (NSF) and
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TABLE III. The basis functions of the irreducible representation of group ngm(OZ) for the two-arm star
of the wave vector k:(l,O,%). Here k is in terms of the cubic notation and k:i(1,1,0)+%(0,1,1) in
Kovalev’s notation using primitive reciprocal unit vectors (Ref. 35). Here k; =k and k,=-Kk. The notation of
representations, such as 7, 7'{ and so on, followed the Kovalev’s notation. gb:” (i=1,2,3,4) represent the
basis functions for four spins in the primitive cell located at (0.5,0.5,0.5), (0.5,0.75,0.75), (0.75,0.5,0.75), and

(0.75,0.75,0.5) in the cubic notation, respectively.

Rep. Arms T hT i o
i ky (1,0,0) -i(0,1,0) -i(0,1,0) (1,0,0)
ky (1,0,0) (0,1,0) (0,1,0) (1,0,0)
T2 ky (1,0,0) (0,1,0) (0,1,0) (1,0,0)
ks (1,0,0) i(0,1,0) i(0,1,0) (1,0,0)
I, ky (0,1,0) i(1,0,0) i(1,0,0) (0,1,0)
ky (0,1,0) (1,0,0) (1,0,0) (0,1,0)
i ki 0,1,0) (1,0,0) (1,0,0) (0,1,0)
ks (0,1,0) -i(1,0,0) -i(1,0,0) (0,1,0)
7 ky (0,0,1) -i(0,0,1) i(0,0,1) 0,0,1)
ky (0,0,1) (0,0,1) (0,0,1) (0,0,1)
s ky (0,0,1) (0,0,1) (0,0,1) (0,0.1)
ks (0,0,1) i(0,0,1) -i(0,0,1) 0,0,1)
T ky (1,0,0) i(0,1,0) i(0,1,0) (1,0,0)
ky (1,0,0) 0,1,0) (0,1,0) (1,0,0)
™ k (1,0,0) (0,1,0) (0,1,0) (1,0,0)
ky (1,0,0) i(0,1,0) i(0,1,0) (1,0,0)
Y ky (0,1,0) i(1,0,0) i(1,0,0) (0,1,0)
ky (0,1,0) (1,0,0) (1,0,0) (0,1,0)
7 ki (0,1,0) (1,0,0) (1,0.0) 0,1,0)
ky (0,1,0) -i(1,0,0) -i(1,0,0) (0,1,0)
7 ky (0,0,1) i(0,0,1) -i(0,0,1) 0.0.1)
ky (0,0,1) (0,0,1) (0,0,1) (0,0,1)
™ ky (0,0,1) 0,0,1) (0,0,1) (0.0.1)
ky 0,0.1) i(0,0,1) -i(0,0,1) (0,0,1)

spin-flip (SF) scattering cross sections, ongg and ogp
become?!33

ONSF= O + Oy,

(1)

Here oy is structural scattering cross section, and o, is the

Osp= 0y + 0y -

magnetic scattering cross section, o, % (1 —Q'§)|FM(Q)|2. In
onsp, We neglected the interference term between the nuclear
and the magnetic scattering amplitude because the reflections
considered here are either purely nuclear or purely magnetic.
Fyu(Q) is the magnetic structure factor F w(Q)= %gF (Q)=,

<S§,>¢' Q4 where F(7) is the magnetic form factor of
Cr’*.3% The perpendicular sign in o,,, is to emphasize that
only the spin components perpendicular to the wave vector
transfer Q contribute to scattering. Figure 4(a) shows the
NSF and SF scattering intensities obtained at a nuclear

(2,2,0) Bragg reflection. Only NSF scattering is expected for
this nuclear Bragg reflection and the contribution in the SF
channel due to the contamination from the incomplete instru-
mental polarization efficiency of 0.85(1). For magnetic
Bragg reflections that belong to the k=(%,%,0) family, Eq.
(1) becomes

_c
ONSF = Oyy»

TSE= Ty, + Oy - (2)

As shown in Fig. 4(b), The magnetic (%,%,O) Bragg re-
flection has dominantly SF intensity and a weak signal in the
NSF channel. The weak NSF intensity is due to contamina-
tion from incomplete polarization. We investigated five mag-
netic Bragg reflections: (%,%, ), (%,%,O), (%,%,0), (%,%,0),

and %,%,0 . After the correction for the incomplete polar-

ization, at these reflections only SF scattering is present. This
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TABLE IV. Superpositions of two irreducible representations, C,¢*17+C,y*27, which give real spins to

the atoms for klz(%,%,O) and k,=-k,. 1(1,1,0) represents the spin at site 1 is along (1,1,0). Positions of

the 1 to 16 sites are shown in Fig. 6(a).

Superposition Nonzero spins in a chemical unit cell

ki1 +kyTy 1(1,1,0) 8(1,1,0) 9(1,1,0) 16(1,1,0)
—ik T +ikyT 4(1,1,0) 5(1,1,0) 12(1,1,0) 13(1,1,0)
ky1i+ikyT| 2(1,1,0) 3(1,1,0) 10(1,1,0) 11(1,1,0)
ik T +ko 7| 6(1,1,0) 7(1,1,0) 14(1,1,0) 15(1,1,0)
ki T+kym 1(1,1,0) 8(1,1,0) 9(1.1.0) 16(1,1,0)
—ik 7y +ik,y 7y 4(1,1,0) 5(1,1,0) 12(1,1,0) 13(1,1,0)
kymy+iky 7 2(1,1,0) 3(1,1,0) 10(1,1,0) 11(1,1,0)
ik, 7y +ky 7 6(1,1,0) 7(1,1,0) 14(1,1,0) 15(1,1,0)
ki 7h+ky ) 1(0,0,1) 8(0,0,1) 9(0,0,1) 16(0,0,1)
—ik 7y +ik, 7 4(0,0,1) 5(0,0,1) 12(0,0,1) 13(0,0,1)
ki m3+ky 73 1(1,1,0) 8(1,1,0) 9(1,1,0) 16(1,1,0)
—ikym3+iky T3 4(1,1,0) 5(1,1,0) 12(1,1,0) 13(1,1,0)
ky 73+ ik, T 2(1,1,0) 3(1,1,0) 10(1,1,0) 11(1,1,0)
iky Ty +ky ) 6(1,1,0) 7(1,1,0) 14(1,1,0) 15(1,1,0)
ky e+ ko 1(0,0,1) 8(0,0,1) 9(0.0.1) 16(0,0,1)
—iky 75 +iky Ty 4(0,0,1) 5(0,0,1) 12(0,0,1) 13(0,0,1)
ky 7 +iky 75 2(0,0,1) 3(0,0,1) 10(0,0,1) 11(0,0,1)
ik, 70+ ky 7 6(0,0,1) 7(0,0,1) 14(0,0,1) 15(0,0,1)
kymy+koTy 1(1,1,0) 8(1,1,0) 9(1,1,0) 16(1,1,0)
—ikyT4+ikyTy 4(1,1,0) 5(1,1,0) 12(1,1,0) 13(1,1,0)
kyTy+iky 2(1,1,0) 3(1,1,0) 10(1,1,0) 11(1,1,0)
ik Ty+ko 7, 6(1,1,0) 7(1,1,0) 14(1,1,0) 15(1,1,0)
ky 7y +iky ) 2(0,0.1) 3(0,0,1) 10(0,0,1) 11(0,0,1)
iky Ty +ky 7y 6(0,0,1) 7(0,0,1) 14(0,0.1) 15(0,0,1)

means that the spins are in the ab plane, o9,=0.

For the magnetic Bragg reflections that belong to k
=(1 0%) there are NSF as well as SF scattering. The ratio
of SF to NSF scattering intensity, ogg/ ongp, 1S different at
different Q, as shown in Fig. 5. Table I lists the ratios for
three different reflections. The ratio, ogg/ ongp, increases as [
increases. This information places a strict restriction on any
possible spin configuration for ZnCr,0,. For these reflec-
tions, Eq. (1) becomes

b
ONSF= Oyy»
Osp= 0y  + 0y - (3)

Therefore, using of,=0,
Osk _( _ h >|FX4|2
W+

= 4)

ONSF
The fact that the measured ogp/ ongg follows 1—h?/(h>+1%)
within the experimental accuracy indicates |F%,|=|F%,| for the
k=(1 ,0,%) reflections.

C. Group theoretical approach to determination
of spin structure

We have employed a group theoretical approach devel-
oped by Izyumov et al.?? to determine the spin structure. The
basic idea of the method is that any magnetic structure with
a characteristic wave vector k can be expanded in terms of
basis functions, z,bkL, of irreducible representations of the spin
space of the crystal Gy which is a subgroup of the crystal
space group G,

Si =2 spr= 2 g CLyfe. (5)
L L

Here 0j represents a magnetic ion at site j in zeroth primitive
cell. L runs over the arms of the star k; and N\ over irreduc-
ible representations of the star arm k;. The star of a wave
vector K, {k}, is the set of nonequivalent vectors that can be
obtained by acting on k with an element of the crystal space
group g € G. For instance, the star {k}=_{(1,0,%)} has six

arms: k;=(1,0,2)(1,0,2) (1.1,0).(T.2,0).(:0,1), and
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TABLE V. Superpositions of two irreducible representations, C; y/*17+ C,*27, which give real spins to the

atoms for k1=(1 0%) and k,=-Kk;.

Superposition Nonzero spins in a chemical unit cell

kyTi1+kaTin 1(1,0,0)  4(1,0,00 6(0,1,0) 7(0,1,0) 9(1,0,0) 12(1,0,0) 14(0,1,0) 15(0,1,0)
—ikym+ikyT2 2(0,1,0) 3(0,1,0) 5(1,0,0)  8(1,0,00 10(0,1,0) 11(0,1,0) 13(1,0,0) 16(1,0,0)
kyTip+kaTy 1(1,0,0) 2(0,1,0) 3(0,1,0) 4(1,0,0) 9(1,0,0) 10(0,1,0) 11(0,1,0) 12(T,0,0)
—ikymp+ikym 5(1,0,0) 6(0,1,0) 7(0,1,0) 8(1,0,00 13(1,0,0) 14(0,1,0) 15(0,1,0) 16(1.0,0)
ki +kyr,  1(0,1,0)  4(0,1,0) 6(1,0,0) 7(1,0,0) 9(0,1,0) 12(0,1,0) 14(1,0,0) 15(1,0,0)
—ik ), +iky7i,  2(1,00)  3(1,000  5(0,1,00  8(0,1,00 10(1,0,0) 11(1,0,0) 13(0,1,0) 16(0,1,0)
kith+kotl 1(0,1,0) 2(1,0,0) 3(1,0,0)  4(0,1,0)  9(0,1,0) 10(1,0.0) 11(1,0,0) 12(0,1,0)
ik T, +ikam 5(0,1,0) 6(1,0,0) 7(1,0,00  8(0,1,0) 13(0,1,0) 14(1,0,0) 15(1,0,0) 16(0,1,0)
kit +kyr;,  1000.1)  40,0,1) 6(0.0.1) 7(0,0,1) 9(0,0,1) 12(0.0.1) 14(0,0,1) 15(0,0,1)
=ik 7 +ika7i, 2(0,0,1) 3(0,0,1) 5(0,0,1) g(0,0,1) 1000.0.1) 11(0,0,1) 13(0,0,1) 16(0,0,1)
kith+kt 1(0,0,1) 2000,)  300,0,)  4(0,0,1) 90.0.)  1000,0,1) 11(0,0,1) 12(0,0,1)
—iky T +iky7y 500,0,1) 6(0,0.1)  7(0,0.1) g(0,0,1) 13(0.0.1) 14(0,0.1) 15(0,0,1) 16(0.0,1)
k71 =kaTay 1(1,0,0)  4(1,0,0) 6(0,1,0) 7(0,1,0) 9(1,0,0) 12(1,0,0) 14(0,1,0) 15(0,1,0)
ikymy+ikymy  2(0,1,0) 3(0,1,0) 5(1,0,0) 8(1,0,0) 10(0,1,0) 11(0,1,0) 13(1,0,0) 16(1,0,0)
~ki Ttk 1(1,0,0) 2(0,1,0) 3(0,1,0)  4(1,0,00  9(1,0,0) 10(0,1.0) 11(0,1,0) 12(1.0,0)
ikymo+ikym 5(1,0,0) 6(0,1,0) 7(0,1,0)  8(1,0,0) 13(1,0,0) 14(0,1,0) 15(0,1,0) 16(1,0,0)
kity—koty,  1(0,1,0)  4(0.1,0)  6(1.00) 7(1.0.0) 9(0,T,0) 12(0,1,0) 14(1,0,0) 15(1,0,0)
ik Ty ik, 2(1,0,0)  3(1,0,0) 5(0,1,0) 8(0,1,0) 10(1,0,0) 11(1,0,0) 13(0,1,0) 16(0,1,0)
kymy=kah 10,1,0) 2(1,0,0) 3(100) 4(0,1,0) 9(0,1,0) 10(1,0,0) 11(T,0,0) 12(0,1,0)
ik T +ikahy 5(0,1,0) 6(1,0,0) 7(T,0,0) 8(0,1,00 13(0,1,0) 14(T,0,0) 15(1,0.0) 16(0,T,0)
ki 75—k, 1(0,0,1)  4(0,0,1) 6(0,0,1) 7(0,0,1) 9(0,0,1) 12(0,0,1) 14(0,0,1) 15(0,0,1)
ik +iko™y  2(0,0,1) 3(00,1) 5(0,0,1) 8(0,0,1) 100,0,1) 11(0,0,1) 130.0.1) 16(0,0,1)
ki 7y, ~ka 1y, 100,0,1)  2(0,0,1) 3(0,0,1) 40,0,1) 9(0,0,1) 10(0,0,1) 11(0,0,1) 12(0,0,1)
iki T +iky Ty 5(0,0,1) 6(0,0,1) 7(0,0,1) 8(0,0,1) 13(0,0,1) 14(0,0,1) 15(0,0,1) 16(0,0,1)

(%,O, 1_). Once Sék.} is determined, all spins at other primitive
cells, S,;, can be derived by

S,= 2 explik - t,)Sgk, (6)
L

where t, is the translation vector for the n cell from the
zeroth primitive cell. How to obtain the basis functions of the
irreducible representations, %fL for a given Gy has been ex-
plained in a great detail in a book by Izyumov et al.?® and
will not be repeated here. The basis functions y*- for k
=(%%O) and k=(1 0%) are listed in Tables II and III, re-
spectively. Note that gbk)f are complex but their simple super-
position at the two arms C,y*1"+C,y*2™ with k,=-k; can
generate a real function, provided that the coefficients C; and
C, are appropriately selected. Tables IV and V list such su-
perpositions for k=(%,%,0) and k=(1 ,O,%), respectively.
The superpositions of two irreducible representations,
C, 17+ C,*27, do not yield nonzero spins for all 16 mag-
netic ions in a chemical unit cell. Instead the superposition

yields four nonzero spins for k=(%,%,0) and eight nonzero

spins for k=(1 ,0, %) in a chemical unit cell. This means that
to put all 16 nonzero spins into a chemical unit cell we have
to consider at least four of the Cy*1"+ C,y/?7 listed in Table
111 for k=(4,1,0) and at least two of C;y*17+ C,y#2" listed in
Table IV for k=(1 ,0, %) Obviously the number of such com-
binations is very large. To narrow down the possible spin
structure, we used the constraints that were obtained from
polarized neutron diffraction data: (1) Spins are in the ab
plane, S,=0, and (2) |F¢,|=|F5| for the (1 ,O,%) family re-
flections. We also assumed that (3) all spins have the same
magnitude and that (4) all tetrahedra have zero net spin.

Since for this domain, there are two characteristic wave
vectors involved in the Néel state of ZnCr,0,4, we rewrite
Eq. (5) to separate Sg;} into two components;

k;(1,0,1/2 k;(1/2,1/2,0
St = 2 SO 4 ) spr/R 10
L L
—_ Sg;(l,o,l/z)}+Sg;(1/2,1/2,0)}- (7)

Note that S®1-0-12} congribute only to the k=(l ,0, %) family

reflections and S*(1/2120} only to the k=(% , % ,0) reflections.
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FIG. 6. Prototypes of possible spin structures in a chemical
unit cell for k=(1 ,0,%) which satisfy the conditions described in
the text: (a) X174+ yRomgjgkiti_jykomia (b) (1+i)yk1m+(1
—i)ykemzy (-1 +l')¢kl7'{1 +(-1 _,')1/}(27;2’ and  (c) 1Ty ko2
+i¢,k171’1—il/,k2:;2_l'¢kl7'21_l'¢k2722_ ¢le§1+ ¢sz§z. Here k1=(1 ,0,%)
and k2=(1_,0, %) Magnetic unit cell is doubled along the ¢ axis and
spins change the sign in the chemical unit cell displaced by (0,0,1).

A shaded square represents a tetrahedron formed by four Cr3* ions.
Symbols represent z coordinates of the magnetic Cr3* ions.
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FIG. 7. Prototypes of possible spin structures in a chemical
unit cell for k= (2,;,0) in which satisfy the constraints described
in the text: (a) ¢MIT+igRomiw(1+0)gKim4 (1—i)ygkem— gk ™
_L/,kzé’ (b) ¢1€17{+,‘¢sz1’+(1 +i) k14 (1 _l')L/,l(Zth_ilﬁklﬂlt_;’[,kZTJi,
(c) i¢k17i+,/,szf+(1_,')¢k172+(1+i)¢(zfz_¢)(1é_i¢}(zé+¢)(17§
Fighoms (140 R4 (1 i) ghom— ki ghoms, and (d)
R g (1 =) g1 (L ) gRamm R o ko 75— g
+(1—i)¢k174+(1+i)¢k274—¢}‘174 11,bk274 Here kl—(z,z,O) and k,

2 - ,O The magnetic unit cell is doubled along the a and the b
axes, and spins change sign in the chemical unit cell displaced by

(1,0,0) or (0,1,0). Symbols representing z coordinates of the mag-
netic Cr?* ions are the same as those in Fig. 6.
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FIG. 8. A combination SK(I.01/2}y gk(112.12.0} for 7nCr,0,
which is consistent with all the experimental data explained in
the text. Here SK(012}=ykimiyykomioyjykirii_jykemia_jykin
—ighrme gk ghta with ki=(1,0,3) and ko= (1,0,1,0
[shown in Fig. 5(c)], and Ssik(1/2.12: 0)}—¢)‘171+i¢k271+(1+1)g£k172
+(1=iyghom—ighimoghom with k;=(4,2,0) and k=1, 0)
[shown in Fig. 6(a)].

2020

Therefore, we can obtain the two components separately.
First, let us consider the k=(1 ,0, %) reflections. We exam-
ined all possible combinations of the superpositions listed in
Table V and found 24 different spin configurations which can
be divided into three categories shown in Fig. 6. Figure 6(a)
shows a noncollinear spin configuration in which spins are
along either a axis or b axis, Fig. 6(b) shows a noncollinear

1,0) or (1,1,0), and

Fig. 6(c) shows a collinear spin configuration along (1,1,0).
A collinear spin configuration along a axis or b axis is ruled
out by the constraint |[F,|=|F%,|.

Figure 7 shows four prototypes of k= (2,2,0) spin con-
figurations in which all tetrahedra satisfy the antiferromag-
netic constraint to have zero net moment: (100) type collin-
ear and noncollinear spin configurations and (110) type
collinear and noncollinear spin configurations.

Now, it is possible that ZnCr,O, has two magnetic do-
mains: One with k=(1,0, ;) and the other with k= (2 2,0)
However, to explain the neutron powder diffraction data, the
population of the two domains as well as the ordered mo-
ment have to be exactly the same for both domains. Further-
more, another spinel ZnFe,O, also magnetically orders at
low temperatures and the Néel state has only a single char-
acteristic wave vector k=(1,0,%). We believe it is more
likely that the two characteristic wave vectors participate in

spin configuration with spins along (1,

014405-8
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TABLE VI. The basis functions of the irreducible representation

of group FdSTm(OZ) for the two-arm star of the wave vector k
L1l

=\3.32:7/):
Rep. 0 A7 o7 o7
! (0,0,0) 0,1,1) (1,0,1) (1,1,0)
7 (1,1,1) (0,0,0) (0,0,0) (0,0,0)
7 (0,0,0) (1,0,0) (0,1,0) (0,0,1)
(0,0,0) 0,1,1) (1,0,1) (1,1,0)
75 (0’0’0) (27070) (0, T,O) (0,0, _)
(0,0,0) (0,2,0) 0,0,1) (1,0,0)
(0,0,0) 0,0,2) (1,0,0) (0,1,0)
(0,0,0) (1,0,0) (0.2,0) (0,0,1)
(0,0,0) (0,0,1) (2,0,0) 0,1,0)
(0,0,0) (0,1,0) (0,0,2) (1,0,0)
(0,0,0) (1,0,0) (0,1,0) 0,0,2)
(0,0,0) (0,1,0) (0,0,1) (2,0,0)
(0,0,0) 0,0,1) (1,0,0) 0,2,0)
e 2,1,1) (0,0,0) (0,0,0) (0,0,0)
0,1,1) (0,0,0) (0,0,0) (0,0,0)

the ordering of all the spins in ZnCr,O,4. Then, the resulting
spin structure would be a summation of S*U1.0-12} and
§k(112,1220} A1l Cr3* ions are equivalent in this spinel crystal
structure and are expected to have the same magnitude, in-
dicating that S%k(1.0:-/2} ang §k(1/2.1200} have to be collinear
and orthogonal to each other. Among the spin structures
shown in Figs. 6 and 7, the only possibility would be the
combination of S%(1.0.12} shown in Fig. 6(c) and $k(1/2.1/2.0)}
shown in Fig. 7(a). Figure 8 shows the resulting coplanar and
noncollinear spin structure, in which each tetrahedra has two
pairs of antiparallel spins and have zero net moment.

For the kz(%,%,%) domain, there are many possible spin
structures. From Figs. 3(b)-3(d), we see that the intensities
of the kz(%,%,%) reflections relative to other propagation
vectors varies from sample to sample. These reflections are
strongest for sample 1 shown in Fig. 3(b) and it is only for
this sample that it is possible to distinguish between various
models for the spin structure through goodness of fit. Thus
our discussion will be limited to sample 1.

The basis vectors are given in Table VI. As the transition
is first order, multiple propagation vectors can contribute to
the ordering. Many can be ruled out on physical grounds,
however, a large number of possibilities remain. If one visu-
alizes the B sublattice of the spinel lattice along the (111)
direction, one can decompose it into alternating triangular
and kagome layers. The 7| configuration, has no spins in the
triangular layer and the “g=0" spin configuration in the
kagome layer. The 7, configuration has spins only in the
triangular layer coupled antiferromagnetically. The 73 con-
figuration is ferromagnetic in the Kagomé plane. The 74 con-

PHYSICAL REVIEW B 77, 014405 (2008)

TABLE VII. Goodness of the fit of the different spin models
with kz(%%%) to the {%%%} reflections obtained from different
ZnCr,0, polycrystalline samples. The best fit was obtained with the
71+ 7 model [see Fig. 10(a)].

Sample Rep. T (K) X Ry,
1 T 1.5 4915 0.0664
- 4.888 0.0662
) Ty T 4911 0.0664
" T 4.998 0.067
T 7 4995 0.067
S 73 1368 0.0618
3 " T 2 4003 00592

figuration allows for spins in the triangular layer to lie within
that plane at an arbitrary angle. We also considered linear
combinations of these configurations.

In Table VII, we show the relative goodness of fits for the
various spin models. Overall, we found that the model most
consistent with our data was one with the “g=0" configura-
tion in the Kagomé layer and an antiferromagnetic configu-
ration within the triangular layer (see Fig. 10). Though the
difference in the values of X2 is slight, if we examine a
nuclear and a magnetic peak for goodness of fit for two dif-
ferent configurations, 7+ 7, and 7+ 7+ 73 models, we can
see that there is a real improvement in the fit for the 7+ 7,
spin model shown in Fig. 9 (see Fig. 10).

D. Summary

We have solved the magnetic structure of ZnCr,0,. We
have examined single crystals and three polycrystalline

2.0 [ e T Y T TR T T T T TN E
A B N B NA B N BN
1558 N s N 4
AN . S oA BN
1ok s N 5 s N4
h B B NA B B
05l N s N ]
A BN B B N BN
00k, YNC 45 NC L as NE L s NE ]
0.0 0.5 1.0 1.5 2.0

FIG. 9. This is the magnetic structure most consistent with the
data for the k=(%,%,%) propagation vector. The vertices represent
spins. Spins at vertices A, B, and C lie in the Kagomé layer and lie
within the plane and have basis vectors of 0,1,1), (1,0,1), and
(1,1,0), respectively. The vertices labeled by S lie in the triangular
layer and the spins point along the body diagonal (1,1,1). The spins
in the triangular layer form an antiferromagnetic pattern, alternating
pattern out/into of the (1,1,1) plane.
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FIG. 10. Peak to the left is the k=(% ,%,g) magnetic reflection.
The peak to the right is the nuclear (1,1,1) peak for comparison. (a)
Fit to the spin configuration formed from a linear combination of 7
and 7,. (b) Fit to the configuration formed from a linear combina-

tion of 7y, 7, and 73.

samples. From this, we have found that the system has dif-
ferent domains formed from different k vectors. The relative
phase fractions vary from sample to sample (see Fig. 3). The
k=(1,0,0) is the same collinear structure as that of ZnV,0,.
The k=(1,0,%) and k=(%,%,0) domain has the in plane
structure found in Fig. 8. The structure of the kz(%,%,%)
domain is found in Fig. 9. Since the antiferromagnetic tran-
sition is first order, multiple characteristic wave vectors are
allowed unlike in the usual case of second order magnetic
transitions. This multiplicity of domains with different char-
acteristic wave vectors suggests that even the ordered state of

this frustrated magnet is degenerate.
IV. MAGNETIC CORRELATIONS IN ZnCr,_, Ga, O,

In this section, we study how magnetic correlations
change with nonmagnetic doping.

A. First order transition to Néel state in ZnCr,0,

For completeness, we start with the phase transition in
pure ZnCr,0,.° Figure 11 shows that in the pure ZnCr,0,
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FIG. 11. Contour map of inelastic neutron scattering ob-
tained from ZnCr,0O, for Q=1.5 Al ) T dependence
of magnetic Bragg scattering from a powder (squares), o,

= (2"7’:)3 [1(Q, w)47Q2dQdhw where v,, is the volume per Cr* ion,

and of lattice strain along a and ¢ (circles) measured by single
crystal neutron diffraction. The figure is reproduced from Ref. 6.

long range antiferromagnetic order [squares in frame (b)] and
the local spin resonance [frame (a)] appear simultaneously in
a spectacular first order phase transition. It also shows that
the magnetic order is accompanied by a cubic to tetragonal

T(Q=1.5 A'w) (1/meV/Cr)

FIG. 12. Contour map of inelastic neutron scattering obtained
from ZnCr, ¢Gag ;O4, measured at Q=1.5 A~! as a function of en-
ergy transfer iw and T. (b) T dependence of the ordered moment
(filled squares) and of crystal strains (open and filled circles) ob-
tained by Rietveld analysis neutron powder diffraction data taken at
BTI, NIST at various Ts using GSAS. (¢) T dependence of full
width at half maximum (FWHM) of the magnetic (1/2,1/2,2)
Bragg peak (squares). The line is instrumental angular resolution.
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FIG. 13. (a)—(c) hw dependence of the inelastic magnetic neu-
tron scattering intensity measured at Q=1.5 A~ at three different
Ts spanning the phase transition. Solid lines are the fits described in
the text. (d) T dependence of integrated intensity in the unit of
(1/meV/Cr), (e) of peak position, and (f) of full width at half maxi-
mum of the Aw=4.5 meV excitations.

lattice distortion [circles in frame (b)]. The tetragonal distor-
tion lifts some of degeneracy due to geometrical frustration
and allows the system to order magnetically. Furthermore,
the ordered state pushes spectral weight in the energy spec-
trum up to the local spin resonance at iw=4.5 meV. It is
unusual that a long range ordered phase can support a local
spin resonance.

B. Second order transition to Néel state in ZnCr; ¢Ga, ;04

The weak nonmagnetic doping in ZnCr, ¢Ga, ;0,4 does not
change the nature of the low 7 phase. As shown in Fig. 12,
below Ty=12.5 K magnetic long range order [squares in
Fig. 12(b)], tetragonal distortion [circles in Fig. 12(b)] occur
along with the appearance of the local spin resonance at
fiw=4.5 meV [Fig. 12(a)]. Magnetic peaks in the doped ma-
terial are the same as those in ZnCr,0,, which indicates that
5% doping of nonmagnetic Ga** ions into Cr sites does not
change the spin structure in the ordered phase. However, the
three features appear gradually in a second order fashion,
which is in contrast with the first order phase transition in the
pure ZnCr,O, shown in Fig. 11. Figure 12(c) shows that as
soon as the static moment develops FWHM of magnetic
peaks becomes Q-resolution limited. This indicates the static
correlations are long range no matter how small the static
moment is. We conclude that the magnetic ordering in the
weakly doped material immediately develops in the entire
material rather than in small magnetic clusters, growing in
size grows as T decreases.

Figure 12(a) shows that the local spin resonance and the
low energy cooperative paramagnetic spin fluctuations coex-
ist over the temperature range, 10 K<T<Ty=12.5 K [also
see Fig. 13(b)]. For comparison, in the pure ZnCr,O, the
Néel phase has only the linear spin waves below the local
spin resonance [see Fig. 11(a)]. To quantitatively study how
the dynamic spin fluctuations in the weakly doped system

evolve with T, we have fit the of 7(Q= 1.5 A Aw) in Fig.
12(a) to two simple nonresonant response functions, each
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FIG. 14. Q dependence of the inelastic magnetic neutron scat-
tering intensity obtained from ZnCr; ¢Gaj ;04 at 1.7 K and 12 K
which is integrated over different energies.

with single relaxation rate: one centered at Aw=0 with a
relaxation rate I'; and the other centered at iwy=4.5 meV
with a relaxation rate I

I —

\ 2

(3]

(hw)* + <5>2 ' (how —hoy)” + (£>2
2 0 2

I(ho) = (8)

The first term is to account for the quasi-elastic scattering
that exists at 7> 10 K. Since we did not have data above
30 K, it is difficult to extract meaningful information on the
low energy excitations due to cooperative paramagnetism.
Here we focus on the local spin resonance. Figures
13(d)-13(f) show the results of the fits. The peak position,
hiw=12.5 meV, [Fig. 13(e)] is T independent below Ty
within experimental accuracy. The relaxation rate of the local
resonance decreases as T decease to I'=1.4(1) meV at 1.4 K.
For comparison, in pure ZnCr,O, I'=1.5(1) meV for all T

<Ty. The strength of the local resonance, I, [Fig. 13(d)],
develops as proportional to the staggered magnetization,
(M), shown is Fig. 12(b). This suggests that the static spin
component is necessary to support the local spin resonance.

Figure 14 shows the spatial correlations of the fluctuating
moments with different energies. The low energy lying exci-
tations at 12 K (squares) and the local resonance at 1.7 K
(filled circles) and 12 K (open circles) have almost identical
Q dependence with a half width at half maximum «
=0.50(5) A"'=0.67(6)a”. Even though their characteristic
energies are different, the structure factor associated with the
spin fluctuations have the same wave vector dependence.
The excitations for Aw<<3 meV at 1.7 K (triangles) also
have a broad peak centered at Q=1.5 A~!. This Q depen-
dence is identical to that of the powder-averaged structure
factor of the antiferromagnetic hexagonal spin fluctuations
found in the spin liquid phase of the pure ZnCr,0y,.
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C. Spin freezing in ZnCrq 4Ga 04

In this section, we study spin correlations in
ZnCr, 4,Gaj 4O, which exhibits spin-glass-like behaviors in
bulk susceptibility measurements.?* Figure 15 shows elastic
magnetic scattering intensities measured at 1.4 K. High tem-
perature background was measured at 20 K and subtracted.
Unlike in the pure ZnCr,O, and the weakly doped
ZnCr, ¢Ga, 0y, this system does not have magnetic Bragg
peaks but a broad peak centered at a finite wave vector Q
=1.5 A~! with k=0.48(5) A~!. This indicates that the 30%
nonmagnetic doping destroys the magnetic long range order
and reduces the correlation length down to distance between

nearest neighboring Cr ions. 1(Q) going to zero as Q ap-
proaches zero indicates that the antiferromagnetic constraints
are still satisfied in the heavily doped sample. One may think
that the frozen local object in this composition may be
smaller in size than the antiferromagnetic hexagons found in
the pure and x=0.05 systems. To test this, we have fitted the
data to the powder-average magnetic neutron scattering in-
tensity for an isolated spin dimer’®* (see the solid line in
Fig. 15),

—sin Qry

o ,1
1(Q) = |F(Q)| ore

where the distance between nearest neighboring Cr** ions
ro=2.939 A. The spin pair model produces a broader peak
than the experimental data. Instead, the Q-dependence is al-
most identical to that of the fluctuating spins in pure
7ZnCr,0, and weakly diluted ZnCr, ¢Ga, 0, (see Fig. 14).
This indicates that the local antiferromagnetic hexagonal
spin fluctuations are robust against the nonmagnetic Ga dop-
ing.

We can estimate the average frozen moment from the
elastic neutron scattering data

, )

3 21 A7h
3¢ f [Q)FQ1*d

02 A-

2.1 A1
f Q’1dQ

02 Al

(M| = (10)

Integrating the difference data over Q yields [(M)[?
=0.24(4)uz/Cr, in  other  words, [(M)|=g(S)us
=0.49(4) up/Cr. This quantity is substantially less than the
Néel value [(M)|=gSug=3uz/Cr and also much less than
those values of ZnCr,O, and ZnCr; ¢Ga, ;Oy,.

Figure 16 shows elastic and inelastic neutron scattering
intensities measured at 0=1.5 A~ as a function of tempera-
ture. The onset of elastic magnetic scattering at around 10 K
signals the development of magnetic correlations on a time
scale, 7>2#/AE=0.013 ns set by the energy resolution of
the instrument. Energy integrated inelastic scattering data
over 0.3 meV <7w<0.6 meV show a broad maximum at
around 10 K indicating the critical scattering at the phase
transition. Bulk susceptibility data with a maximum at a
lower temperature 7;=1.8 K> show that this apparent criti-
cal temperature is not unique but decreases with the energy
scale of the measurement. Such behavior, which is character-

PHYSICAL REVIEW B 77, 014405 (2008)

T(Q) (1/cr)

0.0 0.5 1.0 1.5 2.0 2.5

FIG. 15. Q dependence of elastic magnetic neutron scattering
intensity ZnCr, 4GayOy4, measured with energy window of |fiw|
<0.05 meV.

istic of spin glasses, indicates that a precipitous softening of
the magnetic fluctuation spectrum takes place upon lowing
the temperature, leading to anomalies when the lowest en-
ergy scale of the system falls below the characteristic energy
scale of the measurement.

V. DISCUSSIONS AND SUMMARY

ZnCr,0y is so far the best realization of an antiferromag-
net on the magnetic lattice of corner-sharing tetrahedra with
uniform nearest neighbor interactions and without any site
disorder. Upon cooling, this system is heading toward spin-
liquid state with the signature of almost linear spin relaxation
rate. At low temperature 7<<Ty=12.5 K, the system under-
goes a cubic-to-tetragonal distortion to settle into a Néel
phase with a local spin resonance.® The three features, tetrag-
onal distortion, long range order, and the local spin reso-
nance, occurs abruptly in a first order fashion. The spins in
the Néel phase have reduced staggered magnetization,
(S)/S<1 (see the inset of Fig. 2) due to geometrical frustra-
tion. Weak 5% nonmagnetic doping into the magnetic lattice

0.2 0.075
i~
<

o =

5 0

So1fF P o tyst b b 4 oo E

= i by =

T pe t E

3 é big ; NS

= [

: g
0.0f--mmmmmmm e -t 4o025 2
—
0 5 10 15 20
T (K)

FIG. 16. T dependence of elastic magnetic neutron scattering
intensity obtained from ZnCr, 4Gay 0, and integrated over |fiw|
<0.05 meV and inelastic magnetic neutron scattering intensity in-
tegrated over 0.3 meV<Aw<0.6 meV. Both data were measured
at 0=1.5 A-L,
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further suppresses the staggered magnetization but does not
destroy the Néel phase at low temperatures. The phase tran-
sition from cooperative paramagnetic phase to Néel phase,
however, occurs gradually upon cooling in a second order
fashion. The cubic to tetragonal lattice distortion also follows
the development of the magnetic phase transition. This sup-
ports that the phase transition is magnetically driven. Fur-
thermore, the change in nature of the phase transition from
first-order to second-order with 5% doping of nonmagnetic
Ga®* ions suggests that there might be a tricritical point3”-8
in the phase diagram that is located close to the phase tran-
sition of the pure ZnCr,O,.

It is understandable that the nature of the low temperature
phase does not change with 5% doping because for 5% di-
lution in the magnetic lattice, the majority of tetrahedra have
all 4 spins (81% of tetrahedra have all 4 spins and 17% have
3 spins®®). For 30% dilution (1-x=0.7), 24% of tetrahedra
have 4 spins, 41% have 3 spins, and 27% have 2 spins. Even
though it is still above the percolation threshold (I-x,
=0.39), the long range correlations are destroyed and re-
placed with short range correlations. Despite these differ-
ences, all three materials contain spin correlations with a
common broad Q dependence even though the energetics of
the local correlations change with the occupance of the mag-
netic lattice and the existence of long range order. This indi-
cates that the local spin object responsible for the common Q
dependence is robust against strong disorder. This finding
may explain why bulk properties in geometrically frustrated
magnets are robust against dilution. In SCGO(x), where the
magnetic entity relevant to geometrical frustration can be
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viewed as quasi-two-dimensional (111) slabs of corner-
sharing tetrahedra,** the bulk susceptibility shows field hys-
teresis and the nonlinear susceptibility diverges, typical of
spin glasses, the specific heat C(T) is proportional to 72 as in
an ordinary two-dimensional antiferromagnet.*! These bulk
behaviors are very robust against magnetic dilution.*!*> Qur
finding that the local spin fluctuations in ZnCr,_,,Ga, O, are
robust against nonmagnetic site disorder might be an intrin-
sic characteristic of geometrically frustrated magnets and
thus explain the insensitiveness of the bulk properties to the
nonmagnetic doping.

In summary, we have determined the spin structure of the
Néel phase in ZnCr,_,,Ga,, O, which would provide a start-
ing point for a theory for this system. We have studied, using
neutron scattering, how nonmagnetic doping changes the
first order magnetoelastic phase transition in pure ZnCr,0,
into the second order spin-glass-like phase transition. We
have found that a broad Q dependence is robust against di-
Iution, suggesting that such local spin correlations both in
Néel phase and in short range ordered phase is intrinsic to
the geometrically frustrated magnets and distinguishes these
systems from the ordinary spin glasses.
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